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Brief Introduction

Motivation
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Existing Methods and Limitations

1. The first group inspired by texture synthesis techniques attempts to
fill regions at image-level. Specifically, such approaches usually
sample and paste full image resolution patches from source images

into missing regions, which allows synthesizing results with details.

2. Asthe lack of high-level understanding of an image, such approaches

often fail in generating semantically-reasonable results.

3. The second group of approaches proposes to encode the semantic
context of an image into a latent feature space by deep neural
networks and then generate semantic-coherent patches by

generative models.

4. It remains challenging to generate visually-realistic results from a
compact latent feature, as full image resolution details can be usually

smoothed by stacked convolutions and poolings.

Proposed Network



PEN-Net
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Figure 2: The Pyramid-context Encoder Network (PEN-Net) is proposed to boost the capability of U-Net in image inpainting
with three tailored components, i.e., a pyramid-context encoder (a), a multi-scale decoder (b), and an adversarial training
loss (d). First, once the compact latent feature has been encoded, the pyramid-context encoder further improves the encoding
effectiveness by filling regions from high-level feature maps to low-level feature maps (with richer details) through the
proposed Attention Transfer Network (ATN) (c). Second, the multi-scale decoder takes as input the reconstructed features

from ATNs through skip connections and the latent features for decoding. Finally, the decoder decodes the features back into

an image. The whole network is optimized by minimizing pyramid L1 losses and an adversarial loss. [Best viewed in color.]
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Attention Transfer Network
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where p! is the i-th patch extracted from ¢! outside mask,
p'; is the j-th patch extracted from ¢ inside the mask. Then
softmax is applied on the similarities to obtain the attention
score for each patch:
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where g denotes transposed convolution operation, & de-
notes feature concatenation, and ¢ is the reconstructed fea-
ture from an ATN in the [-th layer of the encoder.

Pyramid L1 losses
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Contribution

1. We propose a novel network, ATN, to learn region affinity from high-

level feature maps (e.g., the compact latent features in the encoder).

2. Our model can fill holes multiple times (depends on the depth of the
encoder) by repeating using ATNs from deep to shallow, which can re-

store an image with more fine-grained details.
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Brief Introduction

Motivation

1. Recent deep learning based approaches have shown promising results for the
challenging task of inpainting large missing regions in an image.

2. These methods can generate visually plausible image structures and textures,
but often create distorted structures or blurry textures inconsistent with

surrounding areas.

3. This is mainly due to ineffectiveness of convolutional neural networks in

explicitly borrowing or copying information from distant spatial locations.

Existing Methods and Limitations

1. Early works attempted to solve the problem using ideas similar to texture
synthesis, i.e. by matching and copying background patches into holes starting

from low-resolution to high-resolution or propagating from hole boundaries.

2. However, as they assume missing patches can be found somewhere in
background regions, they cannot hallucinate novel image contents for
challenging cases where inpainting regions involve complex, non- repetitive
structures (e.g. faces, objects).

3. CNN+GAN

4. Unfortunately, these CNN-based methods often create boundary artifacts,

distorted structures and blurry textures inconsistent with surrounding areas.

5. We found that this is likely due to ineffectiveness of convolutional neural net-
works in modeling long-term correlations between distant contextual

information and the hole regions.

Proposed Network

Proposed Network
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Figure 2: Overview of our improved generative inpainting framework. The coarse network is trained with reconstruction loss
explicitly, while the refinement network is trained with reconstruction loss, global and local WGAN-GP adversarial loss.
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Figure 3: Illustration of the contextual attention layer.
Firstly we use convolution to compute matching score of
foreground patches with background patches (as convolu-
tional filters). Then we apply softmax to compare and get
attention score for each pixel. Finally we reconstruct fore-
ground patches with background patches by performing de-
convolution on attention score. The contextual attention
layer is differentiable and fully-convolutional.
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Unified Inpainting Network
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Figure 4: Based on coarse result from the first encoder-
decoder network, two parallel encoders are introduced and
then merged to single decoder to get inpainting result. For
visualization of attention map, color indicates relative loca-
tion of the most interested background patch for each pixel
in foreground. For examples, white (center of color coding
map) means the pixel attends on itself, pink on bottom-left,
green means on top-right.
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We propose a novel contextual attention layer to explicitly attend on related feature
patches at distant spatial locations.

We introduce several techniques including inpainting network enhancements, global and
local WGANSs and spatially discounted reconstruction loss to improve the training stability
and speed based on the current the state-of-the-art generative image inpainting
network.

Our unified feed-forward generative network achieves high-quality inpainting results on
a variety of challenging datasets including CelebA faces, CelebA-HQ faces, DTD textures,
ImageNet and Places?2 .
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Brief Introduction

Motivation
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Existing Methods and Limitations

1. Patches-based
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Figure 2. The overall architecture of our inpainting model.

Content Loss:
Contour Completion Module:
B4 mask YR B, SEEUEARF D,

BANRWF AR mask WER MR, ERFNEGMETUEREIRZERER
BRNILFE RO,

Therefore we can take the contour map as samples of a distribution, and calculate the
distance with the ground-truth contour by calculating their binary cross-entropy between
each pixel
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Contribution

1. We propose to explicitly disentangle structure inference and image completion to
address challenging scenarios in image inpainting where holes overlap with or touch
foreground objects.

2. To infer the structure of images, we propose a contour completion module trained
explicitly to guide image completion.

3. Our experiments demonstrate that the system produces higher-quality inpainting
results compared to existing methods.
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Brief Introduction
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Figure 1. An instance of our Meta-SR based on RDN [16]. We also call the network Meta-RDN. (a) The Residual Dense Block proposed
by RDN [6]. (b) The Feature Learning Module which generates the shared feature maps for arbitrary scale factor. (c) For each pixel on the

SR image, we project it onto the LR image. The proposed Meta-Upscale Module takes a sequence of coordina lated and scale-related
vectors as input to predict the weights for convolution filters. By doing the convolution operation, our Meta-Upscale finally generate the
HR image.
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